Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei-Min Liu, You-Quan Zhu, Yi-Feng Wang, Gong-Chun Li and Hua-Zheng Yang*

State Key Laboratory and Institute of ElementoOrganic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
youquan_zhu@mail.nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.055$
$w R$ factor $=0.134$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(4-tert-Butylphenoxy)-2-chloropyrimidine

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}$, the benzene and pyrimidine rings are nearly perpendicular, the dihedral angle between them being 84.7 (2) ${ }^{\circ}$.

Received 10 May 2005
Accepted 2 June 2005
Online 10 June 2005

Comment

Pyrimidine derivatives are very important molecules in biology and have many applications in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT, which is the most widely used anti-AIDS drug (Gilchrist, 1997). In order to discover further biologically active pyrimidine compounds, the title compound, (I), was synthesized and its crystal structure determined (Fig. 1).

(I)

The benzene and pyrimidine rings of (I) are nearly perpendicular, the dihedral angle between them being 84.7 (2) ${ }^{\circ}$. The $\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 5, \mathrm{~N} 1-\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 5, \mathrm{C} 10-$ $\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 4$ and $\mathrm{C} 6-\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 4$ torsion angles are 6.8 (4), $-174.0(3),-93.2(3)$ and $91.2(3)^{\circ}$, respectively (Table 1).

Experimental

2,4-Dichloropyrimidine ($0.30 \mathrm{~g}, 2 \mathrm{mmol}$) and anhydrous potassium carbonate $(0.35 \mathrm{~g}, 2.5 \mathrm{mmol})$ were mixed in acetone $(20 \mathrm{ml})$. A solution of 4-tert-butylphenol ($0.32 \mathrm{~g}, 2.1 \mathrm{mmol}$) in acetone (5 ml) was then added dropwise with stirring. The mixture was stirred at room temperature overnight. The solvent was then evaporated in vacuo and the residue was washed with water. The resulting light-yellow precipitate was filtered off and recrystallized from ethanol and well shaped crystals of (I) were obtained.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}$	$D_{x}=1.262 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=262.73$	Mo $K \alpha$ radiation
Monocline, $C 2 / c$	Cell parameters from 602
$a=20.692(11) \AA$	reflections
$b=12.456(6) \AA$	$\theta=2.2-21.2^{\circ}$
$c=11.792(6) \AA$	$\mu=0.27 \mathrm{~mm}^{-1}$
$\beta=11.510(8)^{\circ}$	$T=294(2) \mathrm{K}$
$V=2765(2) \AA^{\circ}$	Block yellow
$Z=8$	$0.20 \times 0.18 \times 0.16 \mathrm{~mm}$

$D_{x}=1.262 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 602
reflections
$\theta=2.2-21.2^{\circ}$
$\mu=0.27 \mathrm{~mm}$
Block, yellow
$0.20 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.932, T_{\text {max }}=0.958$
6731 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.134$
$S=1.00$
2788 reflections
182 parameters
H -atom parameters constrained

2788 independent reflections 1384 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.052$
$\theta_{\text {max }}=26.3^{\circ}$
$h=-25 \rightarrow 25$
$k=-9 \rightarrow 15$
$l=-12 \rightarrow 14$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0558 P)^{2}\right. \\
\quad+0.1813 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001^{\circ} \\
\Delta \rho_{\max }=0.18 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Only the major component of the disorder is shown.

SHELXTL (Bruker 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Key Project for Basic Research (grant No. 2003CB114400), the National Natural Science Foundation of China (grant No. 20372040) and the Research Fund for the Doctoral Programme of Higher Education.

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. \& Tecle, B. (1993). Brighton Crop Prot. Conf. Weeds, pp. 41-46.
Maeno, S., Miura, I., Masuda, K. \& Nagata, T. (1990). Brighton Crop Prot. Conf. Pests and Diseases, pp. 415-422.
Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

